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Abstract. Deep learning has become the predominant paradigm in im-
age recognition nowadays. Perception systems in vehicles can also ben-
efit from the improved features provided by modern neural networks
to increase the robustness of critical tasks such as obstacle avoidance.
This work proposes a vision-based approach for on-road object detection
which incorporates depth information from a stereo vision system within
the framework of a state-of-art deep learning algorithm. Experiments
performed on the KITTI benchmark show that the proposed approach
results in significant improvements in the detection accuracy.
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1 Introduction

Detection of objects from a moving observer is an essential task for a large
number of advanced driver assistance systems (ADAS) and virtually every au-
tonomous car. As vehicles are meant to share the road with other users, each
with its distinctive behavior, predictions about future traffic situations require
an accurate identification of the objects in the surroundings.

While object detection in images is a classic problem in computer vision, traf-
fic scenes are particularly complex due to the diversity of appearances, poses,
and occlusions. Additionally, robustness to changes in illumination, weather, and
other external factors is an implicit prerequisite for these applications. Chal-
lenges posed by driving environments have often been tackled making use of
the additional information provided by stereo vision systems [1], which are com-
posed of two nearly-identical cameras displaced horizontally from one another.
This setup allows the extraction of depth information about the scene.

On the other hand, deep learning has become ubiquitous in almost every ap-
plication involving image recognition in the past few years. Convolutional Neural
Networks (CNNs) are currently the method of choice after they have demon-
strated to be extremely useful in practical applications. Their success stems
from their ability to learn hierarchical features which significantly outperform
previous hand-crafted features for a variety of computer vision tasks.

In this work, we aim to enhance the performance of a state-of-art object de-
tection framework, Faster R-CNN [2], by incorporating depth information from
a stereo camera in a simple, straightforward way.



2 Related Work

The standard pipeline for object detection in images entails two main stages:
extraction of regions of interest (ROIs) and classification of those proposals. A
few years ago, the research interest was focused on hand-crafted features, e.g.
HOG [3]. As the complexity of feature extraction schemes was tractable, it was
usually possible to perform an exhaustive search over the image using a sliding
window approach.

The introduction of CNNs led to a paradigm shift: today, features are learned
in a supervised optimization process that makes use of large datasets. The com-
plex hierarchical structures of CNNs involve longer computation times, and
sliding-window approaches have become unfeasible due to the huge amount of
regions to be classified. For this reason, as well as the large receptive fields
featured by the conventional CNN architectures, extraction of ROIs in deep-
learning-based object detection schemes remains a very active research area.

Girshick et al. [4] developed the R-CNN paradigm, where CNN features are
computed for every candidate ROI and used in a further classification step. The
method was further updated in [5] with the introduction of Fast R-CNN.

As a natural evolution, Faster R-CNN [6] extends the CNN approach to the
ROI extraction stage, thus resulting in an end-to-end detection framework. The
convolutional layers are applied over the image to extract features which are si-
multaneously used to propose candidate regions and to classify them. The former
is performed by a Region Proposal Network (RPN), while the later is carried
out with Fast R-CNN, which additionally provides a bounding box refinement.
As a consequence, the most time-consuming task, i.e. the computation of the
convolutional features, is performed only once.

Despite the impressive performance of Faster R-CNN in generic datasets, e.g.
ILSVRC [7], achieved with only a fraction of the cost of more sophisticated mod-
els, hypothesis generation remains a substantial limiting factor in performance.
As a matter of fact, a significant number of methods in the top positions of the
challenging KITTI benchmark [8] are evolutions of the baseline Faster R-CNN
approach specifically designed to overcome this limitation, such as the scale-
dependent pooling introduced in [9], or the multi-scale CNN presented in [10].

3 Object Detection Approach

We aim to enhance the solid detection baseline provided by Faster R-CNN by
leveraging the stereo depth information without significantly altering the original
design. For that end, we adapt the setup of the network model to allow the
processing of four-channel data structures containing the RGB color channels
of the left image and, additionally, a scaled disparity map. Our approach is
summarized in Fig. 1.

The disparity map is a data structure which encodes the deviation in hori-
zontal coordinates, d, of corresponding points in both images belonging to the
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Fig. 1. Proposed object detection method. Our contribution is highlighted in blue.

stereo pair. Thus, the value of each pixel in our fourth channel, s · d, is inversely
proportional to the scene depth at that location, Z, following the relation:

s · d =
f ·B
Z

(1)

where f is the focal length and B the baseline of the binocular pair. Since these
values are determined for a particular stereo system, the disparity value is indeed
inversely proportional to the actual depth.

The reasoning behind our approach is that region proposal can take ad-
vantage of the geometrical information provided by the disparity estimation to
segment the foreground objects from the background, thus overcoming the most
severe shortcoming of the CNN method. Using disparity values straightforwardly,
instead of actual depth values, is expected to benefit the segmentation of objects
at closer distances due to the inverse relationship linking both magnitudes.

In summary, our design is intended to preserve the end-to-end nature of
the Faster R-CNN detection method while enhancing the performance of the
classification, especially for objects represented with a limited number of pixels.

3.1 Parameter Tuning

Before considering the influence of the depth channel in the CNN architecture,
we optimized the performance of the baseline Faster R-CNN by tuning its hyper-
parameters according to the specific requirements of driving environments. The
modifications are targeted to the KITTI dataset [8], and include:

1. Training samples selection. Samples used in the training procedure are
chosen so that their IoU overlap with any ground-truth DontCare label,
corresponding to distant or unclear objects, is below a certain threshold:
25% for the Fast R-CNN module and 15% for the RPN. On the other hand,
only samples eligible to be included in the ‘hard’ difficulty level are used.

2. Scale. Faster R-CNN has been shown [11] to be highly sensitive to the size
of the input images. We have found that scaling the original images (with
resolutions around 1242× 375) to 500 pixels in height, both for training and
evaluation, offers a good trade-off between accuracy and computation time.



3. RPN anchors. Proposals from the RPN are parametrized relative to fixed
boxes called anchors. The design of the RPN is intended to handle scales
and aspect ratios different than those of the anchors; however, using anchors
of multiple sizes has been proven as an effective solution, so the a-priori
knowledge about the objects in the environment can be used to further
improve the detection accuracy. We use three scales and three aspect ratios
for the RPN anchors, as in the original Faster R-CNN; but the values have
been modified to fit the typical traffic participants, according to Table 1.

Table 1. Modification in the settings of RPN anchors.

Original Proposed

Scales {1282, 2562, 5122} {802, 1122, 1442}
Aspect ratios {2:1, 1:1, 1:2} {5:2, 5:4, 2:5}

3.2 Stereo Depth Information

Different alternatives can be adopted to estimate the disparity map from the
images of the stereo pair. Henceforth, the following methods are considered:

1. The classical Semiglobal Matching algorithm [12] in its OpenCV implemen-
tation [13]; i.e. using block matching and the Birchfield-Tomasi metric.

2. A state-of-art CNN-based algorithm, DispNet [14], currently ranked 9th in
the KITTI stereo leaderboard among the published methods1 and with a
reported runtime of 60 ms.

The density of the SGM disparity map is around 90% due to the existence of
unmatched pixels. As these undefined values could prevent the gradient descent
training to converge, we perform a background interpolation to fill the holes, so
every pixel (u0, v) with a undetermined value in the disparity map, @d(u0, v), is
given a value according to:

d̂(u0, v) = min(d(u−
0 , v), d(u+

0 , v)) (2)

where d(u−
0 , v) and d(u+

0 , v) are the disparities of the contiguous defined pixels
in the same row. DispNet, on the other hand, provides a 100% dense disparity
map.

As mentioned above, values in the disparity map are scaled before entering
the CNN, according to the s factor in Eq. 1. This is actually a normalization
of the disparity values between 0 and 255/s. Note that the scaling operation
must be performed with saturation to prevent overflow. We chose s = 4 in order

1 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=

stereo



to obtain values close to the pixels in the color channels; this means that only
disparities originally in the range between 0 and 64 are distinguishable in the
resulting map. Given the parameters of the KITTI stereo system, that clipping
corresponds to depths from 6m to the infinite, which is reasonably tailored to
the field of view of the camera. Fig. 2 depicts an example of the resulting fourth
channel (already normalized) for each of the two employed stereo matching ap-
proaches.

(a) (b)

(c) (d)

Fig. 2. Example of normalized disparity maps for a frame in the KITTI dataset (a),
obtained with the two selected stereo matching approaches: DispNet [14] (b) and SGM
[12] with interpolation (d), computed from the original SGM (c).

CNN architectures typically used in image recognition can be applied to our
approach with minimal changes: only the filters in the first convolutional layer
have to be adapted to accept a four-channel input.

A common practice in training CNN models is to initialize the weights in
the convolutional layers using values trained in larger datasets, such as the
ILSVRC [7], with the hope that the learned features may still be useful for
related applications. As the filters that we use in the first convolutional layer are
different from the existing pre-trained models, we initialize the weights in the
fourth channel as the mean value of the same weight in the filters correspond-
ing to the preexisting color channels. This approach, which avoids the need to
retrain the models from scratch, is based on the assumption that discontinuities
in depth are related to discontinuities in intensity. Additionally, we let weights
in all the convolutional layers, including the shallower ones, be modified during
training to fit the new nature of the data.

4 Results

We compare our approach with the baseline Faster R-CNN to investigate the im-
provement introduced by the stereo information. We use the already mentioned



KITTI object detection benchmark [8] for evaluation. Since the test ground-
truth labels are not publicly available, we use the train/validation split by [15]
to ensure that images from the same sequence do not exist in both training and
validation sets. Following the standard KITTI setup, we use the Average Pre-
cision (AP) metric to evaluate the performance of the object detection pipeline
and require IoU overlaps of 70%, for cars, and 50%, for pedestrian and cyclists.

We employ the VGG16 architecture [16], with the minimal changes discussed
in Section 3.2. The approximate joint training from [2] is adopted. For every
method, training has been performed for 50k iterations with a learning rate of
0.001 and then for 30k iterations with 0.0001. The seven distinct categories in
the KITTI dataset are considered; however, only Car, Pedestrian and Cyclist
classes are evaluated because of the low number of samples in the remaining
categories. The number of RPN proposals is limited to 300; additionally, a non-
maximum suppression (NMS) is performed. Results are presented in Table 2 for
every category and level of difficulty.

Table 2. Detection AP (%) obtained on the KITTI validation set.

Input Easy Moderate Hard

Car
RGB 88.76 77.01 60.81

RGB+SGM 89.39 77.99 66.84
RGB+DispNet 88.82 77.29 66.56

Pedestrian
RGB 85.97 68.71 61.41

RGB+SGM 87.39 69.16 63.62
RGB+DispNet 87.70 69.73 64.47

Cyclist
RGB 65.22 53.67 50.37

RGB+SGM 64.07 52.25 49.68
RGB+DispNet 66.51 55.77 52.26

Detection using the disparity information surpasses the bare RGB approach
in almost all cases, with the notable exception of SGM for cyclists. On the
other hand, DispNet outperforms the SGM estimation for pedestrians, while
SGM shows better results for cars. The improvement introduced by the disparity
information is especially noticeable in ‘hard’ samples, as shown in the summary
tabulated in Table 3.

The average running time per image of the detection stage is 116 ms using a
NVIDIA Titan Xp and Caffe [17]. For preliminary results with fixed weights in
the first two convolutional layers during training, please refer to the Extended
Abstract of this paper [18].



Table 3. Summary of mAP (%) obtained on the KITTI validation set, expressed as
the difference in percentage points from the baseline RGB approach.

Input Easy Moderate Hard

RGB 79.98 66.46 57.53

RGB+SGM +0.30 +0.01 +2.52
RGB+DispNet +1.03 +1.14 +3.57

5 Conclusion and Future Work

We have presented an approach to exploit the spatial information provided by
a stereo vision system in order to enhance a well-established object detection
method based on Convolutional Neural Networks. Our proposal is particularly
suitable for automotive applications, where stereo cameras have frequently been
employed to deal with the complexity of the environments without significantly
altering the features of the vehicle.

Results have proven the potential of stereo information to enhance the con-
volutional features produced by the network, leading thus to a significant en-
hancement of the detection performance. The improvement is especially notable
when detecting Vulnerable Road Users (VRU), namely pedestrians and cyclists,
frequently identified as the most problematic categories in image recognition.

Further steps might focus on the architecture of the network, adopting either
modern architectures, e.g. ResNets, or ad-hoc designs intended to exploit the
information extraction from the disparity map. Additionally, some of the devel-
opments recently introduced in the literature to overcome the fixed size of the
receptive field could be adopted.

This work is intended to be the first step towards a full scene understanding
system in our IVVI 2.0 intelligent vehicle [19], an experimental platform for
driving assistance systems. This application, along with other critical perception
modules, will enable inference about complex traffic situations.
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