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Abstract. Object identification in images taken from moving vehicles is
still a complex task within the computer vision field due to the dynamism
of the scenes and the poorly defined structures of the environment. This
research proposes an efficient approach to perform recognition on images
from a stereo camera, with the goal of gaining insight of traffic scenes
in urban and road environments. We rely on a deep learning framework
able to simultaneously identify a broad range of entities, such as vehicles,
pedestrians or cyclists, with a frame rate compatible with the strong re-
quirements of onboard automotive applications. The results demonstrate
the capabilities of the perception system for a wide variety of situations,
thus providing valuable information to understand the traffic scenario.
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1 Introduction

Technology has adopted an increasingly important role in transportation sys-
tems over the past decades. Advanced Driver Assistance Systems (ADAS) have
been introduced in an attempt to deal with the fact that wrong decision-making
and distractions are the cause of a significant proportion of traffic accidents.
These systems represent an increase in the degree of automation towards the
future goal of fully autonomous driving, which is expected to lead to significant
improvements in several issues associated with transportation systems.

While automated cars have been already successfully tested in urban envi-
ronments [1], they are in most cases heavily dependent on off-line-built maps.
Navigation with scarce or non-existent prior knowledge remains an open chal-
lenge due to the wide range of complex situations which is required to be han-
dled (occluded landmarks, unexpected behaviors, etc.) within a highly dynamic,
semi-structured environment.

Forthcoming self-driving systems will be demanded to understand complex
traffic situations by themselves. This requirement relies on a robust inference of
the position and motion of every traffic participant in the surrounding scene. Not



only the presence of obstacles must be accounted but also an accurate estimation
of the class to which every obstacle belongs (i.e. car, cyclist, etc.) is essential in
order to correctly understand and predict the traffic situation.

Vision-based approaches [2] have been proved to be highly cost-effective while
enabling close-to-production assemblies given their compact size and ease of
integration. Furthermore, video frames provide a rich data source from which
additional information can be extracted.

In this paper, a vision-based approach enabling an enhanced onboard envi-
ronment perception is introduced. It is targeted to the detection and localization
of the different road participants present in the surroundings of a movable plat-
form. Additionally, object detection is enriched through a viewpoint estimation,
enabling high-level inference about short-term behaviors. A modern convolu-
tional network-based framework is employed to perform the critical inference
steps according to appearance features; later, stereo information allows intro-
ducing spatial reasoning into the system.

The remainder of this paper is organized as follows. In Section 2, we briefly
discuss related works. Section 3 gives a general overview of the work. Section 4
describes the obstacle detection approach, while Section 5 introduces the scene
modeling procedure. Results are reported in Section 6. Finally, Section 7 gives
our conclusions about the work.

2 Related Work

Obstacle detection is an essential feature for automated driving systems. Conse-
quently, a large number of algorithms have been historically developed to that
end. Effort often focused on vehicle and pedestrian detection as these agents are
the most commonly found ones in traffic scenes.

According to the sensing device in use, vision-based methods have tradition-
ally fallen into two main categories: monocular-vision methods and stereo-vision
methods. Stereo-vision provides depth information about the scene and thus is
commonly used in driving applications [3].

Stereo-vision algorithms usually make some assumptions about the ground
or the expected free space on it [4]. However, rich geometry information about
the scene can be recovered, enabling the building of representations such as
probabilistic occupancy maps [5], elevation maps [6] or full 3D models [7], where
obstacles can be identified.

On the other hand, monocular obstacle detection is commonly based on ap-
pearance features. Selection of suitable features was traditionally the most crucial
step in the performance of the detection pipeline and thus a lot of application-
specific features, such as HOG-DPM [8], have been proposed to perform de-
tection of traffic participants (e.g. cyclists [9]). Orientation estimation of the
detected objects, while less frequent, has also been addressed [10].

Representation learning based on deep neural networks has delivered a paradigm
shift in recent years, showing vast improvements over hand-crafted features in
several kinds of recognition tasks. In particular, Convolutional Neural Networks



(CNN) can learn hierarchical data representations that have been shown useful
in object classification [11].

Instead of using the classical sliding-window approach, detection with CNNs
frequently relies on attention mechanisms to limit the number of proposals to
be effectively classified. Within this tendency, Girshick et al. introduced the now
widely known recognition using regions (R-CNN) paradigm [12]. These regions
can be selected according to classical similarity-based segmentation methods;
however, much effort has recently been devoted to end-to-end pipelines where
every stage, including region proposal, can be effectively learned. Faster R-CNN
[13] take advantage of a Region Proposal Network (RPN) which feeds the R-CNN
responsible for the classification task.

CNNs have been applied in several tasks involved in autonomous driving,
such as lane detection [14] and, certainly, object detection [15]. In some cases,
orientation is also predicted to increase the information about the detected in-
stances; thus, in [16], a CNN is used for object detection and viewpoint estima-
tion. Viewpoint is also estimated in [17] through keypoint likelihood models.

3 System Overview

This work has been designed to become the core element of the perception mod-
ule in the IVVI 2.0 (Intelligent Vehicle based on Visual Information) research
platform [18]. IVVI 2.0 is a manned vehicle, equipped with cutting edge auto-
motive sensors, which is meant for the development and testing of ADAS.

Visual sensing units in the IVVI 2.0 include a trinocular stereo camera cov-
ering the field of view in front of the vehicle, which is the source of the images
used by the presented approach. The processing unit includes a high-performance
GPU which enables high-parallel processing, such as that carried out in CNNs.
Robot Operative System (ROS)1 is used for inter-module cooperation.

The method presented here provides a step forward in vision-based detection
and classification. The work consists of two main branches that are intended to
run in parallel, as shown in Fig. 1:

1. Object detection and viewpoint estimation based on appearance. Features
are extracted exclusively from the left stereo image.

2. Object localization, robust to changes in position and orientation of the vi-
sion system resulting from the vehicle movement. A stereo-based 3D recon-
struction is performed, and the extrinsic camera parameters are extracted
under a flat-ground assumption.

As usual in deep learning frameworks, our object detection approach is meant
to be performed almost entirely in the GPU; on the other hand, the object
localization pipeline is expected to make an intensive use of a typical multi-
core CPU during the step of 3D reconstruction. This twofold process has been
designed to fill the available computing capability, in order to meet the time
requirements inherent to the application.

1 http://www.ros.org/
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Fig. 1. Proposed system overview

4 Obstacle Detection

A wide variety of dynamic obstacles can be found in urban and road environ-
ments. Whereas object classification aims to classify predefined image regions,
object detection also requires localizing every object within the image coordi-
nates.

We adopt a state-of-the-art, CNN-based approach, Faster R-CNN [13], to
perform object detection. Based on the popular R-CNN detector [12], Faster
R-CNN provides an end-to-end trainable framework spanning from the image
pixels to the final prediction. While outperforming classical detection pipelines,
Faster R-CNN can deal with a large number of classes with no major impact on
performance, making it particularly suitable for driving environments.

Faster R-CNN involves two different stages: a Region Proposal Network
(RPN), which is responsible for identifying those image regions where objects
are located, and an R-CNN, where image regions from the previous RPN are
classified. Both components are based on CNN architectures and in fact, they
share the same set of convolutional layers. For this reason, Faster R-CNN enables
object detection at real-time frame rates.

We adopt the strategy introduced in [19] to incorporate the viewpoint infer-
ence into the detection framework. The basis of the idea is to benefit from the
already computed convolutional features to obtain an estimation of the orienta-
tion of the objects with respect to the camera. Fig. 2 illustrates the approach. As
with the region proposals from the RPN, viewpoint can be estimated at almost
no cost during test-time given that convolutions are computed only once.

According to the requirements of the application, only the yaw angle (i.e.
azimuth) from which objects are seen is to be estimated, since both relevant
obstacles and the ego-vehicle are assumed to move on the same ground plane.

4.1 Discrete Viewpoint Approach

A discrete approach is adopted for the viewpoint estimation, so that the full
range of possible viewpoints (2π rad) gets divided intoNb binsΘi; i = 0, . . . , Nb−
1 of which only one is employed to represent the object viewpoint. Accordingly,
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Fig. 2. Proposed object detection and viewpoint estimation approach.

objects with a ground-truth angle θ are assigned a viewpoint label i during the
training step such that θ ∈ Θi:

Θi =

{
θ ∈ [0, 2π)

∣∣∣∣ 2π

Nb
· i ≤ θ < 2π

Nb
· (i+ 1)

}
(1)

The proposed object viewpoint estimation system is aimed to provide a view-
point estimation consisting of the parameters of a categorical distribution over
Nb possible viewpoints, r. A single-valued θ̂ estimation can therefore be provided
as the center of the bin b∗ with the greatest probability according to r:

θ̂ =
π(2b∗ + 1)

Nb
(2)

4.2 Joint Detection and Viewpoint Estimation

In the R-CNN framework, image regions are propagated through the network
and, finally, a fixed-length feature vector is extracted to predict the object class.
We introduce the viewpoint estimation straightforwardly: it is inferred from the
same feature vector that is also used to predict the class. This is motivated by
the fact that appearance is highly affected by viewpoint, so a good set of features
should be able to discriminate among different viewpoints.

Solutions introduced with Fast R-CNN [20] are adopted here, so the resulting
feature vectors are fed into a sequence of fully connected layers that are finally
split into three sibling layers. As in the original approach, the first two sibling
layers provide a classification and a bounding box regression, respectively. On



the other hand, the new third layer is responsible for giving an estimation of the
viewpoint, which is ultimately normalized through a softmax function. Given
that classification is performed over K classes, the output of this branch is a
vector r composed of Nb ·K elements, representing K categorical distributions
(one per class) over the Nb viewpoint bins:

rk = (rk0 , . . . , r
k
Nb

) for k = 0, . . . ,K (3)

4.3 Training

According to the results reported in [13], we adopt an approximate joint training
strategy, which has been shown to offer the best time-precision trade-off. View-
point estimation loss is introduced as a logistic loss that only adopts non-zero
values for the ground-truth class; that is, from the NbK-dimensional output r,
we only take into account the Nb elements belonging to the ground-truth class
when computing the loss:

Lv =
1

NB

∑
j∈B

Lcls(r
u∗

j , b∗j ) (4)

where NB is the size of the batch B used to train the Fast R-CNN stage, and
Lcls(r

u∗

j , b∗j ) is the multinomial logistic loss computed with the Nb elements from
r corresponding to the ground-truth class u∗ (i.e. the probability distribution of
the angular bins for the ground-truth class) and the ground-truth label for the
bin classification b∗.

This summation is added to the existing four components of the loss in the
original Faster R-CNN framework, to get a five-component multi-task loss which
is used for training the CNN. Although different weights might be applied to the
components of the loss function, we let every (normalized) loss have the same
contribution.

4.4 Implementation Details

As usual in classification tasks, convolutional layers are expected to be initial-
ized from a model previously trained on the ImageNet classification dataset [21],
while fully connected layers are given random values according to a Gaussian
distribution. In this paper, eight evenly spaced viewpoint bins are considered for
the viewpoint estimation (Nb = 8). Finally, a per-class non-maximum suppres-
sion (NMS) is applied to prune away the duplicated detections.

5 Scene Modeling

Object detection can be augmented with geometrical information in order to
retrieve an instantaneous, local model of the traffic participants in front of the
vehicle. To that end, we use the information from the two cameras in the stereo
rig to build a dense 3D reconstruction of the environment.



Initially, the 3D point cloud of the scene is represented in camera coordinates.
If the ground is assumed to be flat in a relatively small neighborhood from
the vehicle, extrinsic parameters of the stereo system can be estimated in an
online fashion. Accordingly, the effect of camera pose changes due to the vehicle
movement (e.g. traveling on uneven road surfaces) can be properly removed.

Through this process, obstacles first detected through the object detection
stage can be localized in world coordinates and assigned an absolute yaw angle.

5.1 Stereo 3D Reconstruction

We adopt a semi-global approach [22] to perform dense stereo matching. Despite
this family of algorithms being more processing intensive than the traditional
block-matching methods, challenges posed by road environments, e.g. lack of
texture or changes of illumination, make them more suitable for the intended
application. As an example, the disparity map obtained from the scene in Fig.
3a is shown in Fig. 3b.

As a result, a 3D point cloud is obtained (Fig. 3c). Then, a voxel grid down-
sampling, with a grid size of 20 cm, is performed. In addition to reducing the
amount of data to be processed, this filtering is aimed to normalize the point
density along the depth axis.

5.2 Extrinsic Parameters Auto-Calibration

Coefficients defining the ground plane must be estimated as a first step to obtain
the vision system extrinsic parameters. Two pass-through filters are applied in
order to remove points outside a 0–2 m range along the vertical axis and a 0–20
m range along the depth axis. Within that ranges, flatness assumption is fulfilled
with a high probability.

Points comprising the filtered point-cloud are then fitted to a plane using
RANSAC [23] with a 10 cm threshold. Only planes perpendicular to a fixed
direction, with a small angular tolerance, are considered. Since angles defining
the camera pose are expected to be small, that axis is chosen as the vertical
direction in camera coordinates. Fig. 3d illustrates the ground plane (shown in
green) obtained from the voxel-filtered point cloud.

It can be shown [24] that, given a road plane defined by axc+byc+czc+d = 0,
with (xc, yc, zc) being the coordinates of a point belonging to the plane, roll (ψ),
pitch (φ) and height (h) defining the camera pose can be obtained as:

ψ = arcsin(a) φ = arctan

(
−c
b

)
h = d (5)

Yaw angle cannot be extracted solely from the plane, and thus it is assumed
to be nil. We choose not to translate the world coordinate frame along x and
y camera axes, although that displacement may be arbitrarily chosen (e.g. the
origin might be centered at the front end of the vehicle).

That set of extrinsic parameters defines a transformation which is then ap-
plied to the non-filtered point-cloud to get points in world coordinates.
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Fig. 3. Extrinsic parameters estimation pipeline: (a) left image; (b) disparity map; (c)
point cloud; (d) inliers for the plane, in green, over the voxelized cloud (d).

5.3 Object Localization

To obtain the spatial location of the objects in the scene, the correspondence
between points in the image and points in the 3D cloud, preserved within an
organized point cloud structure, is exploited. Points belonging to the ground,
as well as those too close to the camera (e.g. from the hood of the car), are
removed beforehand. For every detection, the median values of the x, y and z
coordinates for the set of 3D points corresponding to the 11 central rows of the
object bounding box are computed and used as an estimation of the 3D location
of the object. Yaw angle, expressed as the rotation around a local vertical axis,
can be approximated taking into account the angle between the positive x axis of
the world coordinate frame and the point given by the coordinates of the object.

By using all the inferred information about the obstacles, a top-view model
of the vehicle surroundings is built, where every object in the field of view is
included alongside their estimated orientation.

6 Results

Our joint object detection/viewpoint estimation pipeline was quantitatively eval-
uated according to the standard metrics on a well-established image benchmark,
while the performance of the scene modeling stage and, eventually, the full sys-
tem, have been tested in real traffic scenes using the IVVI 2.0 vehicle.

6.1 Object Detection and Viewpoint Estimation

Experiments for assess the object detection and viewpoint estimation branch
have been conducted on the KITTI object detection benchmark [25], taking
advantage of the available class and orientation labels. Since annotations for the
testing set are not publicly available, the labeled training set has been divided
into two splits, for train and validation, ensuring that images from the same
sequence are not used in both subsets. Overall, 5,576 images are used in training
whereas 2,065 are subsequently employed to test our algorithms.

Since our work focus on the simultaneous recognition of the different agents of
the scene, our algorithm has been trained to detect the seven foreground classes



provided by the KITTI dataset. Special care was taken to avoid including regions
overlapping with DontCare and Misc regions, neither as positive nor negative
samples while training.

Given that our approach is independent of the particular architecture selected
for the convolutional layers, we tested the two baseline architectures from Faster
R-CNN in our application: ZF [26] and VGG16 [27]. On the other hand, even
though all the models were obtained scaling the input images to 500 pixels in
height during the training, different scales were evaluated at test-time. In all
cases, training was carried out for 90k iterations, with a base learning rate of
0.0005, which was scaled by 0.1 every 30k iterations.

For the sake of brevity, we only evaluate Average Orientation Similarity
(AOS), as introduced in [25], which is intended to assess the joint detection
and viewpoint accuracy. Results for the different architecture/scale combina-
tions are given in Table 1. Please note that results for the Person sitting and
Tram classes are not reliable due to the low number of samples and were there-
fore excluded. Processing times are for our implementation using the Python
interface of Caffe [28] and a NVIDIA Titan Xp GPU.

Table 1. Average orientation similarity (%) and run times (ms) on the test split for
different scales and architectures

Net Scale Car Pedest. Cyclist Van Truck mean Time

375 44.2 35.6 16.1 8.5 3.2 21.5 46

ZF 500 52.7 43.7 18.4 12.9 3.5 26.2 73

625 51.6 40.7 22.7 15.1 5.3 27.1 90

375 64.8 54.7 25.0 22.9 8.5 35.2 79

VGG 500 74.7 61.0 33.0 30.0 12.1 42.2 112

625 75.7 60.9 35.2 31.1 15.4 43.7 144

As shown, precision does not grow significantly when the test-time scale is
raised beyond the original train-time scale, i.e., 500 pixels. On the other hand,
VGG16 considerably outperforms ZF for every analyzed class.

6.2 Scene Modeling

Tests for the scene modeling were performed using the IVVI 2.0 vehicle in real
traffic situations. According to the results in the previous section, we chose
the VGG16 architecture, and 500 as the image scale. Due to the generalization
capability featured by CNN structures, models trained on the KITTI dataset
were used without modifications. An ROI with 500 pixels in height, comprising
the area where objects are typically present in the images, was extracted from
the original 1024x768 images to be utilized by the CNN branch, while the full
frame is employed to build the point cloud at the modeling branch.

Fig. 4 shows four examples of monocular detections (upper row) and their
resulting scene models, where obstacles are represented as dots on a top view of



the reconstructed point cloud (lower row). Object orientation is represented by
an arrow. Additionally, points belonging to the ground plane (RANSAC inliers)
are projected on the image and colored green; they provide a rough estimation
of the traversable area for the vehicle.

(a) (b) (c) (d)

Fig. 4. Some examples of traffic scenes correctly identified by our system.

7 Conclusion

A computer vision framework designed to reach a full traffic scene understanding
has been presented. Traffic participants are identified by a CNN-enabled method,
showing the potential of this approach within automotive applications. Obstacle
viewpoint estimation is introduced as an additional information source to endow
the system with further insight into the scene features.

Because of the nature of the adopted approach, joint object detection and
viewpoint estimation can be performed simultaneously over all classes. Since
CNN parameters are shared across all categories and feature vectors computed
by the CNN are low-dimensional, computation times are compliant with real-
time requirements, yet achieving accurate results. This information can be fur-
ther augmented using a stereo vision 3D reconstruction to gather an accurate
situation assessment in complex traffic situations.

New categories of traffic elements, even those belonging to the infrastructure,
may be subsequently added to enhance the scene understanding. The presented
approach can be naturally extended to the time domain in order to make pre-
dictions about future behaviors of agents involved in the scene. In this regard,
viewpoint estimation provided by the presented method plays a fundamental
role to enable robust inference.



Additionally, the output provided by the system is suitable to be combined
with information from other perception modules, e.g., semantic segmentation,
to build an even further comprehensive model of the surroundings of the vehicle.
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