
Traffic Scene Awareness for Intelligent Vehicles using

ConvNets and Stereo Vision

Carlos Guindel∗, David Mart́ın, José Maŕıa Armingol

Intelligent Systems Laboratory (LSI) Research Group
Universidad Carlos III de Madrid, Leganés, Spain

Abstract

In this paper, we propose an efficient approach to perform recognition and
3D localization of dynamic objects on images from a stereo camera, with the
goal of gaining insight into traffic scenes in urban and road environments.
We rely on a deep learning framework able to simultaneously identify a broad
range of entities, such as vehicles, pedestrians or cyclists, with a frame rate
compatible with the strict requirements of onboard automotive applications.
Stereo information is later introduced to enrich the knowledge about the
objects with geometrical information. The results demonstrate the capabili-
ties of the perception system for a wide variety of situations, thus providing
valuable information for a higher-level understanding of the traffic situation.

Keywords: object detection, pose estimation, deep learning, intelligent
vehicles

Formal publication DOI: 10.1016/j.robot.2018.11.010

1. Introduction

Technology has adopted an increasingly important role in transportation
systems over the past decades. Advanced Driver Assistance Systems (ADAS)
have been introduced in an attempt to deal with the fact that both wrong
decision-making and driver distractions are factors involved in most traffic
collisions. These systems represent an increase in the degree of automation

∗Corresponding author
Email addresses: cguindel@ing.uc3m.es (Carlos Guindel), dmgomez@ing.uc3m.es

(David Mart́ın), armingol@ing.uc3m.es (José Maŕıa Armingol)

https://doi.org/10.1016/j.robot.2018.11.010


towards the future goal of fully autonomous driving, which is expected to lead
to significant improvements in several issues associated with transportation
systems; i.e., energy consumption, exploitation of transport infrastructures
and, last but not least, traffic safety.

Traffic environments, particularly in urban areas, entail a higher degree
of complexity for automated driving. Thus, while automated cars have been
already successfully tested [1, 2], they were in most cases utterly dependent on
off-line-built maps. Navigation with scarce or non-existent prior knowledge
remains an open challenge due to the broad range of complex situations
which is required to be handled (e.g., occluded landmarks and unexpected
behaviors) within a highly dynamic, semi-structured environment.

Forthcoming self-driving systems will have to be endowed with the capa-
bility to understand complex traffic situations by themselves. This require-
ment relies on a robust inference of the position and motion of every traffic
participant in the surrounding scene. Not only the presence of obstacles must
be accounted for, but also an accurate estimation of the class to which every
obstacle belongs is essential to understand and eventually predict the traffic
situation.

Whereas semantic segmentation has gained traction in recent years in
the intelligent vehicles literature [3], dynamic obstacles are still typically
described by an object-based representation. Therefore, detection remains
a critical component of the perception subsystem of an automated vehicle.
Going further, semantic instance segmentation, which is still an ongoing re-
search issue, often relies on a previous robust object detection stage [4].

Vision-based approaches [5] have been proved to be highly cost-effective
while enabling close-to-production assemblies given their compact size and
ease of integration. Even though active sensors, such as those based on laser
or radar measurements, are more robust and can be used in different weather
and lighting conditions (e.g., fog or nighttime), its high cost and its notorious
impact on the vehicle styling are often considered as significant obstacles
preventing widespread adoption. Furthermore, video frames provide a rich
data source from which additional information can be extracted.

In this paper we present a vision-based approach aimed to perform de-
tection and localization of the different road participants in the surroundings
of a movable platform. We have focused on building a system able to fulfill
the requirements that should be expected in a typical use case:

� Robust and accurate detection of the objects in the field of view of

2



the camera, including those partially occluded by another instance. A
modern deep convolutional network–based framework is employed to
perform the critical inference steps according to appearance features.

� Extraction of additional features to enable high-level inference about
short-term behaviors. On top of the object detection inference, we
perform viewpoint estimation, which may be used by downstream per-
ception modules to obtain more accurate predictions of the movement
of the objects.

� 3D localization of the objects within the plane on which the ego vehicle
is moving. Here, we use stereo images to introduce spatial reasoning
into the system.

� Real-time performance. The design choices along the different steps
of the algorithm have been made accordingly to enable the execution
of the complete pipeline in a fraction of a second on commercially-
available hardware.

Previous works relying on deep convolutional networks usually fail to com-
ply with all the constraints stated above, particularly the limited detection
time. We present a practical-oriented application aimed to satisfy the needs
that arise on real automated vehicles, and tested on our research platforms.

This paper is an extended version of the one presented at the Third
Iberian Robotics Conference (ROBOT’2017), in Seville, Spain [6]. In this
manuscript, we offer a further detailed description of the different steps of
the algorithm, as well as more experiments that prove the effectiveness of the
method under different setups, e.g., using a new stereo matching method and
a new backbone architecture. Additionally, we offer a more refined approach
for the object localization step.

The remainder of this paper is organized as follows. In Section 2, we
briefly discuss related works. Section 3 gives a general overview of the work
and how it fits into our research platforms. Section 4 describes the obstacle
detection approach, while Section 5 introduces the scene modeling procedure.
Results are reported in Section 6. Finally, Section 7 presents our conclusions
about the work.

3



2. Related Work

As noted above, obstacle detection is an essential feature for automated
driving systems. Consequently, a large number of algorithms have been his-
torically developed to that end. Effort often focused on vehicle and pedestrian
detection as these agents are the most commonly found ones in traffic scenes.

A variety of vision-based sensors have been used for object detection, in-
cluding omnidirectional [7] or infrared cameras [8]; however, most approaches
fall into two main categories: mono and stereo vision methods. Stereo vision
provides depth information about the scene and thus is commonly used in
driving applications [9].

Stereo vision algorithms are often bounded to make some assumptions
about the ground or the expected free space on it [10]. However, detailed
geometry information about the scene can be recovered, enabling the building
of representations such as probabilistic occupancy maps [11], elevation maps
[12] or full 3D models [13], where obstacles can be identified. Some methods
emulate stereo vision using pairs of consecutive frames [14].

On the other hand, monocular obstacle detection is commonly based on
appearance features. Selection of suitable features was traditionally the most
crucial step in the performance of the detection pipeline and thus a lot of
application-specific features, such as HOG-DPM [15], have been proposed to
perform detection of traffic participants (e.g., cyclists [16]). Traditional fea-
tures have also been used to estimate the orientation of the detected objects
[17].

Representation learning based on deep neural networks has delivered a
paradigm shift in recent years, showing vast improvements over hand-crafted
features in several kinds of recognition tasks [18]. In particular, convolutional
neural networks (CNNs) can learn hierarchical data representations that have
been shown useful in a variety of tasks involved in autonomous driving, such
as lane detection [19], semantic segmentation [20], stereo reconstruction [21],
optical flow [22] and, of course, object detection [23].

Instead of using the classical sliding-window approach, detection with
CNNs frequently relies on proposal algorithms which reduce the search space.
Within this tendency, Girshick et al. introduced the now widely used region-
based convolutional network (R-CNN) framework [24]. Regions can be se-
lected according to classical similarity-based segmentation methods; how-
ever, end-to-end pipelines where every stage, including region proposal, can
be effectively learned, are more frequently used nowadays. Faster R-CNN

4



[25] takes advantage of a region proposal network (RPN) which feeds the
R-CNN responsible for the classification task. Due to its fast and accu-
rate performance, we build our inference subsystem on top of this meta-
architecture. The method has been recently extended to become Mask R-
CNN [26], which includes instance-level semantic segmentation. This ap-
proach has been proved to deliver top-performing results, thus providing
new insight into the relationship between object detection and semantic seg-
mentation.

In some cases, orientation is also predicted to increase the information
about the detected instances. In [27], a CNN is used for object detection and
viewpoint estimation. Viewpoint is also estimated in [28] through keypoint
likelihood models. In [29], a simple regression is introduced into the CNN-
based detection pipeline to estimate the orientation.

Regarding the 3D localization of obstacles, Palazzi et al. [30] proposed a
CNN able to map the 2D coordinates of the bounding boxes in the image to
bird’s eye coordinates, leveraging the training samples provided by a video
game. However, accurate estimations usually rely on the measurements pro-
vided by high-resolution lidar devices [31, 32]. We argue that stereo vision
systems can provide competitive results at localizing obstacles in the near
environment, as will be shown in this work, while retaining the advantages
of vision-based systems that were reported in Sec. 1.

3. System Overview

This work presents an approach for object detection and localization,
aimed to become the core element of the perception module of an intelligent
vehicle. To assess its adequacy, we have implemented the system in the IVVI
2.0 (Intelligent Vehicle based on Visual Information) research platform [33],
shown in Fig. 1. IVVI 2.0 is a manned vehicle, equipped with cutting-edge
automotive sensors, which is meant for development and testing of ADAS.

Visual sensing units in the IVVI 2.0 include a trinocular stereo camera
covering the field of view in front of the vehicle (Fig. 1b), which is the source
of the images used by our pipeline. The support system used for fixing the
camera to the windshield allows for a degree of freedom (pitch) to adapt its
pose to the restrictions imposed by specific modules, e.g., the lane detection
system [34]. For that reason, we cannot assume negligible the pitch angle
between the camera and the ground plane. In any case, calibration is a
recurring issue in most vehicle sensor setups.

5



Figure 1: IVVI 2.0, Intelligent Vehicle based on Visual Information: (a) external view; (b)
detail of the trinocular stereo vision system mounted on the windshield.

The processing unit includes a high-performance GPU which provides re-
sources for high-parallel processing, therefore enabling CNN-based inference
in real time. Robot Operative System (ROS)1 is used for inter-module coop-
eration. Our implementation makes use of its highly modular structure, so
separated nodes perform the different functions involved in the process.

The method presented here provides a self-contained pipeline that maps
from the visual inputs to the object-based representation of the environ-
ment. The approach consists of two main branches that are intended to be
performed in parallel, as shown in Fig. 2:

1. Object detection and viewpoint estimation based on appearance. Fea-
tures are extracted exclusively from the left image of the stereo pair.

2. Object localization, robust to changes in position and orientation of
the vision system resulting from the vehicle movement. A stereo-based
3D reconstruction is performed, and the extrinsic camera parameters
are extracted under a flat ground assumption.

We designed our approach in such a way that these separated branches
extract information to be fused only at the latest stages of the pipeline. In
this way, the object detection task can be performed almost entirely on the
GPU, without having to share resources with the spatial localization subsys-
tem. The latter can instead make intensive use of either a typical multi-core

1http://www.ros.org/

6

http://www.ros.org/


Stereo RGB imgs.

Object detection 

and observation 

angle estimation

3D reconstruction

{SGM, DispNet}

Extrinsic 

parameters 

calibration

Point cloud

Transform

(pitch, roll, 

height)

(cam frame)

Object 

localization

Point cloud

(footprint

frame)

Bounding boxes, class and orientation 

L

R

Stereo

End-to-end

detection

CNN

Scene modelTransformation

Figure 2: Proposed approach overview. The CNN architecture will be shown in detail in
Fig. 3.

CPU or another GPU, depending on the stereo matching algorithm in use
(as will be detailed in Sec. 5). This twofold process has been designed to fill
the available computing capability, thus allowing to comply with the time
requirements inherent to the application.

4. Obstacle Detection

Automated vehicles have to deal with a wide variety of dynamic obstacles
in the highly unstructured traffic environments. Object classification, which
aims to identify predefined image regions, can be performed in myriad ways
using deep convolutional networks; however, object detection additionally
requires locating every object within the image coordinates.

Among the modern detection meta-architectures that have been devel-
oped over the last years, we adopt Faster R-CNN [25] for our identification
branch, due to its particularly compelling set of features:

� It is an end-to-end trainable framework spanning from image pixels
to the final prediction, so no assumptions must be made about the
position of the objects in the image.

� It can deal with a large number of classes with no major impact on
performance; in fact, the number of classes only affects the number of
parameters of the last set of layers.

7



� It is suitable for real-time tasks while achieving state-of-the-art ac-
curacy results, and provides the basis for some modern instance-level
semantic segmentation algorithms.

This framework admits potentially infinite backbone architectures, but
always involves two well-differentiated stages: a region proposal network
(RPN) and a classification step. The former is responsible for identifying
image regions where objects are likely to be located, while the latter as-
signs a category to those proposals. Both components share the same set of
convolutional layers, enabling real-time frame rates.

In its original setup, Faster R-CNN provides a bounding box refinement
along with the classified regions. In this work, we additionally adopt the
strategy introduced in [35] to incorporate the inference of the observation
angle (viewpoint) into the detection framework. Hence, we benefit from
the already computed convolutional features to obtain an estimation of the
orientation of the objects with respect to the ego-car, therefore providing
valuable information to build the scene model. According to the requirements
of the application, only the yaw angle (i.e., azimuth) from which objects are
visible is to be estimated, since both relevant obstacles and the ego-vehicle
are assumed to move on the same ground plane.

As with the region proposals from the RPN, the viewpoint can be esti-
mated at almost no cost during test-time given that convolutions are com-
puted only once. Fig. 3 schematically illustrates the architecture in use.

Features are extracted through a backbone architecture and subsequently
shared across the different inference tasks. The selection of that feature ex-
tractor is a critical choice with a notable impact on the overall performance
of the algorithm, as will be demonstrated in Sec. 6. On the other hand,
the head structure, made of fully connected layers, is a well-established ar-
chitecture that has proven more effective than other one-shot approaches in
significant cases (e.g., distant objects) [36]. The custom viewpoint extension
is described in detail in the following subsections.

4.1. Discrete Viewpoint Approach

A discrete approach is adopted for the orientation estimation so that the
full range of possible viewpoints (2π rad) gets divided into Nb bins which
span 2π/Nb rad each one. One-hot encoding is used, so only one of these
bins is used to describe each object’s viewpoint. In this way, we can pose the
problem as a multinomial classification where the class labels are the angle

8



RGB Image

Feature extractor 

(Conv. layers)

{VGG16, ZF, 

MobileNet}

Feature maps

Common 

FC layers

4096

RPN
ROI 

poolingP
ro

p
o
sa

ls

Observation 

angle

FC + 

Softmax

B. Box 

regression
Class

FC + 

Softmax

FC + 

Softmax

1-D feature vector p/proposal

Box 

& cls

At anchors
At proposals

Figure 3: Proposed object detection and viewpoint estimation approach.

bins themselves. We have found beneficial to make this prediction class-
aware; therefore, we modify the network architecture to provide a vector r
representing K separated categorical distributions rk over the Nb possible
bins, one per category:

rk = (rk0 , . . . , r
k
Nb−1) for k = 0, . . . , K − 1 (1)

Each element ri of this sub-vector expresses the probability of the object’s
orientation being within the range spanned by the bin with index i. Since
a numerical prediction is eventually required to enable high-level interpre-
tation, we finally assign to each detection the value of the center of the bin
with the highest probability, b∗. If we choose the bin with index 0 to start
at 0 rad, that numerical estimation would be computed as:

9



θ̂ =
π(2b∗ + 1)

Nb

(2)

Note, however, that we usually choose the endpoints of the angle intervals
such as their centers are aligned with the common relative directions, i.e.,
left, right, forward and backward; hence, such offset should be taken into
account in the calculation as an angular offset.

4.2. Joint Detection and Viewpoint Estimation

As established by the R-CNN paradigm and depicted in Fig. 3, features
corresponding to each proposal are pooled and propagated downstream to
allow the final layers of the network to perform the inference. In the original
framework, the 4 096-element feature vector provided by the common set of
fully connected (FC) layers is employed to provide a class and a bounding
box regression for each proposal. Additionally, we also use this outcome
to perform viewpoint inference, based on the intuition that appearance fea-
tures can discriminate among different classes and orientations at the same
time. This design fits naturally into the Faster R-CNN meta-architecture
and bears some resemblance to the implementation of the native bounding
box refinement task.

As shown in the upper part of Fig. 3, the feature vectors from the common
FC layers are finally fed into three sibling FC layers. As in the original ap-
proach, the first two sibling layers provide classification and a bounding box
regression, respectively. On the other hand, the new third layer is responsi-
ble for giving an estimation of the viewpoint, which is ultimately normalized
through a softmax function to provide K different probability distributions,
as expressed in Eq. 1. It is important to note that here K includes a catch-all
background class, k = 0, even when r0 is obviously not used since samples
classified as background are not actual detections.

4.3. Loss Function

According to the results reported in [25], we adopt an approximate joint
training strategy, which has been shown to offer the best time-precision trade-
off. Both the RPN and the classification stage are trained simultaneously.
The loss function used for backpropagation at every iteration is composed
of the sum of individual losses which account for the respective tasks (i.e.,
region proposal, classification, and bounding box regression).

10



Likewise, viewpoint estimation is introduced as a new component of the
loss. As we are dealing with a one-of-many classification task, we use a
multinomial logistic loss that only adopts non-zero values for the ground-
truth class. Hence, from the NbK-dimensional output r, we only take into
account the Nb elements belonging to the ground-truth class, with index u∗,
when computing the loss. The loss is aggregated over the NB samples of the
mini-batch B:

Lv =
1

NB

∑
j∈B

[u∗ > 0]Lcls(r
u∗

j , b
∗
j) (3)

where Lcls(r
u∗
j , b

∗
j) is the multinomial logistic loss which accounts for the

divergence between the prediction ru
∗

and the index of the ground-truth bin,
b∗. Note the use of the Iverson bracket to ignore samples that are classified
as background (u∗ = 0).

On the other hand, we use a weighted version of the multinomial logis-
tic loss for the classification task, implemented as an infogain loss with a
diagonal infogain matrix. This way, we intend to counter the effect of the
significant class imbalance that can be observed in real-world datasets. We
assign higher weights to those samples belonging to classes which are un-
derrepresented in the training set to increase their contribution to the total
loss.

The loss function is ultimately composed of the sum of five components,
one per task, normalized by the size of the respective batches. Although
different weights might be applied to the components of the loss function, we
obtain satisfactory results assigning the same weight to every component.

4.4. Implementation Details

We use a custom set of RPN anchors obtained through statistical analysis
to fit the objects in traffic environments. The number of anchors is set to a
total of nine (three scales and three aspect ratios) to limit the computational
requirements.

At the end of the detection pipeline, a non-maximum suppression (NMS)
is applied, taking into account the classification score assigned to each de-
tection by the network. As we train our models to detect a broad set of
classes, and some of them are very similar to each other, we perform the
suppression considering detections from similar classes together. Thus, we
avoid obtaining duplicate detections corresponding to the same instance, as
is often the case for neighbor classes such as Car and Van, or Pedestrian

11



and Cyclist. An intersection-over-union (IoU) overlap of 30% is required to
assume redundant detections.

5. Scene Modeling

The second branch of the algorithm aims to gather geometrical informa-
tion about the scene to augment the object detection from the first part
and build an instantaneous, local model of the traffic participants in front
of the vehicle. To that end, we solely rely on data from the two cameras
in the stereo rig, which are used to build a dense 3D reconstruction of the
environment.

We consider two different coordinate frames in our system: the camera
frame, which is attached to the optical center of the left camera, and the foot-
print frame, which is placed just underneath the Camera frame and oriented
so that the xy-plane and the ground plane are coincident. Both coordinate
frames move together with the ego-car.

Initially, the 3D point cloud of the scene is represented in camera coordi-
nates. However, the most valuable piece of information is instead provided
by the location of the obstacles on the ground plane, where their movement
can be represented as a 2D displacement.

If the ground is assumed to be flat in a relatively small neighborhood from
the vehicle, extrinsic parameters of the stereo system can be estimated in an
online fashion. This way, it is possible to consider and properly remove not
only the relative orientation of the camera with respect to the car but also
the camera pose changes with respect to the ground plane that take place
due to the vehicle movement (e.g., while traveling on uneven road surfaces).
The flat ground assumption holds for most driving environments, as abrupt
road slope changes are rare.

Through the following process, obstacles first detected through the ob-
ject detection stage can be located in footprint coordinates and assigned an
absolute yaw angle making use of the depth information.

5.1. Stereo 3D Reconstruction

Different stereo matching algorithms can be used to retrieve the geometri-
cal information from the stereo image pair. As usual, the features demanded
by our algorithm for this component include good accuracy, since errors are
propagated to the object positioning; high density, so that 3D points can be

12



assigned to every object detected in the image; and, finally, a low computa-
tional burden to allow real-time processing.

We have tested two alternative stereo matching algorithms:

1. A semi-global matching approach [37]. Despite being overcome by more
recent approaches, the SGM method still shows a good trade-off be-
tween accuracy and computation time, with a decent density and good
generalization capabilities.

2. A state-of-the-art, CNN-based model: DispNet [38]. This architecture
features a simple design which achieves competitive results for a frac-
tion of the cost of virtually every other CNN-based approach. Unlike
SGM, this method provides a 100% dense disparity map. We use the
publicly available model with a 1D correlation layer and fine-tuning on
the KITTI dataset.

In general, both methods cope well with challenges posed by road envi-
ronments, e.g., lack of texture or changes of illumination, which makes them
suitable for the intended application. We will analyze the performance of
these two algorithms in the context of our approach in Sec. 6. An example
of the resulting disparity maps, which encode the distance between corre-
sponding points in both images and whose values are therefore inversely
proportional to the depth estimation, is provided in Fig. 4, using the IVVI
2.0 stereo camera, with a baseline of 12 cm. Although the results from the
DispNet are qualitatively better, we have found that they usually present
some spurious estimations in the upper parts of the image, probably due to
the uneven distribution of the ground-truth points used to train the model
(obtained with a down-looking lidar).

(a) (b) (c)

Figure 4: Stereo matching algorithms comparison: left and right images overlapped (a);
SGM disparity map (b); DispNet disparity map (c)

13



Whichever algorithm is used, stereo matching provides a dense depth
estimation. Therefore, it is possible to assign a depth value to virtually
every pixel of the image and then to build a projectable 3D point cloud
which preserves the relationship between pixels and 3D points. Fig. 5 shows
the clouds obtained with the depth estimations from Fig. 4. Depth artifacts
introduced by the DispNet matching are visible in the sky in Fig. 5b.

(a) (b)

Figure 5: 3D point clouds obtained with the two tested stereo matching algortihms: (a)
SGM; (b) DispNet.

5.2. Extrinsic Parameters Auto-Calibration

The auto-calibration procedure is based on finding the plane of the road
in front of the vehicle. To avoid spurious detections, we perform the search
on a subset of the original point cloud. Pass-through filters are applied to
the point cloud in order to limit the search area to the region in front of the
vehicle where the ground plane is likely extractable. We filter out the points
closer than 2 m or further than 20 m, as well as those outside a width range
of 12 m around the depth axis of the camera frame. Within those ranges,
the flatness assumption is fulfilled with a high probability.

Later, the point cloud is downsampled using a voxel grid with a voxel
size of 20 × 20 × 20 cm. In addition to reducing the amount of data to
be processed, this filtering is aimed to normalize the point density along the
depth axis. The resulting cloud from the exemplary image pair is depicted
in Fig. 6a.

Coefficients defining the ground plane must be estimated as a first step to
obtain the extrinsic camera parameters. Points comprising the filtered point-

14



cloud are fitted to a plane using a sample consensus approach, RANSAC [39].
Following [40], a tight threshold of 1.5 cm is used. The search is reduced to
planes perpendicular to the vertical axis of the camera, with a tolerance of
0.35 rad, as we assume the depth axis of the camera frame to be roughly
parallel to the ground plane. Fig. 6b illustrates the ground plane obtained
from the voxel-filtered point cloud.

(a) (b)

Figure 6: Extrinsic parameters estimation pipeline: (a) cropped, downsampled cloud; (b)
plane inliers (in green) over the cloud, with the normal to the estimated plane represented
as an arrow. Camera (top) and footprint (bottom) frames are represented.

It can be shown [40] that, given a road plane defined by axc+byc+czc+d =
0, with (xc, yc, zc) being the coordinates of a point belonging to the plane,
roll (ψ), pitch (φ) and height (h) defining the camera pose can be obtained
as:

ψ = arcsin(a) φ = arctan

(
−c
b

)
h = d (4)

Yaw angle cannot be extracted solely from the plane, and thus it is as-
sumed to be nil. We do not translate the footprint coordinate frame along
x and y camera axes, although that displacement may be arbitrarily chosen
(e.g., the origin might be centered at the front end of the vehicle).

It is noteworthy that this method also produces as a by-product a rough
estimation of the free space in front of the vehicle. This outcome is straight-
forwardly given by the inliers of the plane segmentation.

15



5.3. Object Localization

Both branches of the algorithm merge at the object localization module,
where detections are provided with an estimation of their x and y coordinates
on the ground plane. To that end, the correspondence between points in the
image and points in the 3D cloud is exploited. Data association between
both structures is preserved due to the point cloud used in the pipeline being
organized and projectable.

At this point, the transform obtained from the previous step is applied
to the point cloud to express the points’ coordinates in the footprint frame.
Then, points belonging to the ground, as well as those too close to the camera
(< 3 m), which are assumed to belong mainly to the hood of the car, are
removed.

Henceforth, the estimation of the location of each detected object relies on
the 3D points falling into its bounding box. However, the association between
points and object is not a trivial task. Firstly, it is easily noticeable that not
all points enclosed by a bounding box belong to the detected instance. For
instance, in Fig. 7 is apparent that part of the background is necessarily
included within the detection box.

Figure 7: Grid division of the bounding box representing a detection, where the sub-boxes
used for localization in our approach are filled in semi-transparent white.

Inspired by the concept of ROI pooling [41], we solve this problem by
dividing every h × w bounding box into a H ×W grid of sub-boxes of size
h/H ×w/W . Then, only a subset of the sub-boxes is considered for the task
(Fig. 7). We use H = 7 and W = 7, and take into account all the boxes,
except those in the outermost rows and columns of the ROI (i.e., the 5 × 5

16



inner grid). Our decision is based on statistical analysis and seeks to maxi-
mize the generalization ability of the method against the notable intraclass
variability in shape. Different setups might be used for the various categories
or estimated viewpoints, but we did not observe significant improvement. It
is noteworthy that this approach deals naturally with the scale variability.

Another relevant issue is related to the nature of the stereo matching
process itself. Stereo methods are intended to recover the 3D location of the
points on the surface of the objects. Nonetheless, we aim to estimate the
position of the center of the objects, enabling the use of meaningful higher-
level models of the dynamics of every instance.

Here we assume a fixed size for each of the possible classes, based on
aggregated statistical data from the KITTI dataset [42], and approximate the
objects to a prismatic shape with these dimensions. From Fig. 8, assuming
that the surface point ps (in footprint coordinates) can be obtained from the
point cloud using the sub-boxes method defined above, the central position
of the object, p0 can be computed extending the direction defined by the
vector ps a distance ∆s =

√
∆x2 + ∆y2. ∆x and ∆y are only dependent on

the dimensions of the object (L0 ×W0) and the point of view (θ), which is
conveniently provided by the detection branch.

-∆y

∆x

θ

Ego-car

(footprint

frame)

y

x

x0

-y0

L0

W0

ps

p0

-φ

Figure 8: Schematic representation of the top-down view of the scene with a detected
object (a car facing forwards).

To obtain ps, we rank separately two lists containing the x and y co-

17



ordinates of every point within the selected sub-boxes and extract the first
quartile. The resulting two values are used as an estimation of the x and y
coordinates of ps. The use of the first quartile intends to remove the influ-
ence of the outliers and to ensure that the retrieved point actually belongs
to the object’s surface.

Once determined p0 = (x0, y0), and considering the angle and coordinate
frame definitions in Fig. 8, the actual yaw angle of the object, ϕ, is obtained
as follows:

ϕ = α + atan2(x0, y0) + 3π/2; (5)

Note that this yaw value represents the rotation of the object around a local
vertical axis.

As an unavoidable consequence of using stereo vision to retrieve geomet-
rical information, it is assumed that the accuracy in locating nearby objects
will be greater than for those farther away. The evolution of the error in the
depth estimation, δz, with the distance, z, can be approximated [43] by:

δz =
z2

fB
δd (6)

where f is the focal length, B the baseline, and δd the error made in the
stereo matching process. According to existing stats, we assume δd ≈ 2 for
SGM and δd ≈ 1 for the DispNet method.

6. Results

For assessing our approach, we use a twofold validation procedure which
aims to prove the adequacy of the method at meeting the strict demands
of automotive applications. Hence, we first quantitatively evaluate the ac-
curacy of the critical parts of the algorithm using a well-established image
benchmark and later, we use our research platform to test the method in a
variety of real traffic situations, thus demonstrating its generalization ability.

6.1. Object Detection and Viewpoint Estimation

Experiments to quantitatively assess the object detection and viewpoint
estimation branch have been conducted on the KITTI object detection bench-
mark [42], taking advantage of the per-instance class and orientation labels
available for evaluation. This widely-used dataset features a large number of

18



labeled objects in a variety of pose, occlusion, and truncation circumstances,
thus ensuring the representativeness of the obtained results.

Since annotations for the testing set are not publicly available, we have
divided the training set into two splits for training and validation. We use
a custom split which makes sure that images from the same sequence are
not included simultaneously in both subsets. As we aim at a ratio of 70:30,
5 415 labeled pictures are used in training whereas 2 065 are subsequently
employed to validate our algorithm. The number of instances for each split
is tabulated in Tab. 1. Please note that samples with requirements further
than the established for the Hard difficulty level (min bounding box: 25
pixels, max. occlusion level: difficult to see, max. truncation: 50%) are not
considered either for training or validation.

Car Pedest. Cyclist Van Truck Per. sit.1 Tram1

train samples 20 609 2 476 1 042 2 407 965 222 511
val. samples 8 120 2 010 584 506 129 - -

total 28 729 4 486 1 626 2 913 1 094 222 511

1 Categories used only for training

Table 1: Object occurrence statistics of the train and validation splits.

To explicitly assess the performance of the algorithm under close-to-
production conditions, where a variety of categories must be identified, we
use the seven available foreground classes, all except for DontCare and Misc,
to train the network. Special care was taken to avoid using regions belong-
ing to those two excluded labels at training time, as they might harm the
learning process. On the other hand, Person sitting and Tram categories are
only used for training as the low number of samples discourages its use in
validation. Confusion between neighbor classes is not accounted as an er-
ror. It is important to note that most works in the field limit the validation
stage to the Car, Pedestrian and Cyclist classes, due to the high intra-class
variability and the low number of samples featured by the rest of categories.

We mostly follow the KITTI benchmark regarding the evaluation met-
rics. Therefore, average precision (AP) and average orientation similarity
(AOS) are used to assess object detection and orientation estimation, respec-
tively. We occasionally use the mean across the different categories (mAP

19



and mAOS) to summarize the inference performance. The minimum required
intersection-over-union (IoU) overlap between detections and ground-truth is
70% for motor vehicles and 50% for people and cyclists.

Our experimental setup is based on a python-based implementation built
upon Caffe [44], and NVIDIA Titan Xp GPUs.

From now on, we study the effect of the backbone architecture and other
hyperparameters (e.g., the input scale and the number of proposals) in the
performance of the algorithm. Later, we offer a breakdown of the results for
the top-performing choices.

6.1.1. Hyper-Parameters and Feature Extractor Selection

As our approach is agnostic to the particular architecture used at the
feature extractor stage (i.e., the convolutional layers) of the network, we
investigate three different models, which are known for their high efficiency.
Whereas we use different initial learning rates and numbers of iterations for
each model, we always use an asynchronous SGD with a momentum of 0.9
and reduce the learning rate by 10x every time a 1/3 of the total iteration
count has been completed. The stride of the feature maps is 16 in all cases.
A model pre-trained on ImageNet is used to initialize the weights.

1. Zeiler and Fergus (ZF) [45], an improved variant of AlexNet, with five
convolutional layers. 256 features are used by the RPN, and a 6 × 6
ROI pooling is performed. The initial learning rate is 5e-4 and training
lasts for 90k iterations.

2. VGG-16 [46], with 13 convolutional layers. 512 features are used by
the RPN, and a 7 × 7 ROI pooling is performed. The initial learning
rate is 5e-4 and training lasts for 150k iterations.

3. MobileNet [47], recently released with the focus on embedded appli-
cations. We extract the features from the Conv2d 11 layer, after 18
convolutional layers (half of them, in its depthwise version). 512 fea-
tures are used by the RPN, and a 7×7 ROI pooling is performed. The
initial learning rate is 1e-3, and training lasts for 150k iterations.

Training is performed with a random horizontal flip as data augmentation.
We do not freeze any weights (not even the shallowest ones), nor use dropout.

Following suggestions from recent studies [36], we also study the number
of proposals that the RPN send to the box classifier at test time and the
scale of the input image. In this work, we perform the experiments in such a

20



way that the input scales at train and test times concur; in other words, we
train a different model for each input scale.

This set of hyperparameters has an impact on the accuracy of the de-
tection and viewpoint estimation, but also on the output frame rate of the
algorithm. Consequently, we study the relationship between both magni-
tudes for the main object categories in Fig. 9. Time is given as the median
of the processing time for every frame in the validation split.

0 50 100 150
Time (ms)

40

45

50

55

60

65

70

75

m
A

P
 (

%
)

300 proposals
100 proposals
VGG-16
MobileNet
ZF

(a)

0 50 100 150
Time (ms)

35

40

45

50

55

60

65

m
A

O
S

 (
%

)

300 proposals
100 proposals
VGG-16
MobileNet
ZF

(b)

Figure 9: Accuracy vs. time for different number of proposals, architectures and input
scales (375, 500 and 650, indicated through the marker size): (a) detection performance;
(b) orientation estimation performance. Only samples in the Moderate difficulty level and
belonging to Car, Pedestrian and Cyclist are considered.

Results are given for the Moderate difficulty level subset defined by the
KITTI dataset (min. bounding box height: 25 Px, max. occlusion level:
“partly occluded”, max. truncation: 30%), but comparable results are ob-
tained used the Hard difficulty level. In this experiment, the number of
orientation bins is set to Nb = 8.

Surprisingly, reducing the number of proposals does not harm mAP or
mAOS and even improves the results in some cases, due to a reduction in
the occurrence of false positives. VGG-16 achieves the best accuracy but
is also the slowest architecture; at the other end of the scale, ZF is the
most lightweight model but produces suboptimal results. Finally, the image
size has a very significant influence on both sides. As expected, applying a

21



scale factor over the baseline of 375 pixels in height improves the accuracy,
although the precision plateaus at 1.77× (650 pixels).

6.1.2. Viewpoint Estimation

A particular case of hyperparameter is the number of bins, Nb, used for
the viewpoint estimation. Even when results for Nb = 8 are satisfactory
regarding orientation similarity, it may be advisable to provide a finer-grain
estimation in some particular cases. Yaw angle has a major influence on
the estimation of the 3D location of the objects, and the resolution of π/4
obtained when Nb = 8 might not be enough for the higher-level modules to
apprehend the structure of the traffic scene.

We have tested that Nb = 16 provide similar detection results regarding
average precision. In Fig. 10 we compare the performance of the algorithm
with the VGG-16 backbone for the three different input scales tested and two
variants of the number of bins Nb: 8 and 16.

60 80 100 120
Time (ms)

54

56

58

60

62

64

66

68

70

72

m
A

P
 (

%
)

8 bins
16 bins

(a)

60 80 100 120
Time (ms)

50

52

54

56

58

60

62

64

m
A

O
S

 (
%

)

8 bins
16 bins

(b)

Figure 10: Accuracy vs. time for VGG-16, with different number of bins and different
input scales: (a) detection performance; (b) orientation estimation performance. Only
samples in the Moderate difficulty level and belonging to Car, Pedestrian and Cyclist are
considered.

The detection performance is minimally reduced when Nb is increased, as
is also the mAOS. An example of the effect of this parameter in the resulting
scene model will be provided in Sec. 6.2.

22



6.1.3. Class-Disaggregated Analysis

According to the results above, the VGG backbone, with 100 RPN propos-
als, offers the best performance among the analyzed alternatives. In Table 2,
we provide a breakdown of the results for the analyzed scales given Nb = 8.

It is noteworthy that for the Easy difficulty level, made of samples larger
than 40 pixels, the effect of the scale is significantly lower than for the Mod-
erate and Hard samples. The weak results that we obtain for the Van and
Truck classes can be explained by several factors: the reduced number of
training samples, the high intraclass variability (e.g., box trucks vs. dump
trucks) and the demanding IoU required for these categories.

Comparison with other existing algorithms is not entirely fair because
of two reasons: on the one hand, top-performing algorithms are not trained
to detect all the seven available categories; and on the other hand, we per-
form our experiments using a custom train/validation split. Nevertheless,
we provide a brief comparative in Table 3 against two comparable meth-
ods (i.e., providing multi-class detection and orientation estimation), but it
should be noted that train/test sets, as well as the hardware used to extract
the computation times, are not homogeneous. Despite this, it is remarkable
that the accuracy level achieved by our method is on-par with these more
sophisticated approaches.

6.2. Object Localization

Tests for the assessing of performance of the object localization module
were also performed on the KITTI dataset, where a precise annotation of
the 3D location of the labeled instances is available. It should be noted that
ground-truth locations are provided in the camera frame, so the evaluation
of the extrinsic parameters calibration cannot be included here.

For this evaluation, we rely on the best-performing model among the dif-
ferent ones that we tested on the previous section; that is, VGG-16, with
scale 650 and 100 proposals. We only consider true positive detections ac-
cording to the criteria established before; we also set a minimum threshold
of 20% for the detection score. Fig. 11 shows the distribution of the errors
per category for each stereo matching method. The error is represented as
the absolute Euclidean distance in the xz-plane of the stereo camera between
the estimated location and the ground-truth position.

Despite the presence of a substantial amount of outliers, the median of
the localization error is 0.771 m when using SGM and only 0.517 m with
the DispNet method. However, it is important to note that we are using a

23



diffic. scale Car Pedest. Cyclist Van Truck time (ms)

Average Precision (AP)

Easy
375 83.86 77.53 56.88 37.16 10.58 52
500 88.54 79.73 73.79 44.39 15.03 78
650 90.14 85.57 74.32 40.08 10.75 123

Moderate
375 71.59 64.48 41.91 30.25 9.96 52
500 77.83 67.77 53.47 38.87 14.77 78
650 84.49 70.39 55.28 34.78 12.30 123

Hard
375 56.33 59.68 40.96 30.32 6.11 52
500 60.40 61.46 52.12 37.52 10.56 78
650 67.11 66.34 54.23 35.58 9.17 123

Average Orientation Similarity (AOS)

Easy
375 82.24 71.13 42.02 36.59 9.04 52
500 86.88 73.42 54.12 43.90 11.52 78
650 88.75 78.76 57.19 39.66 10.62 123

Moderate
375 69.78 58.31 31.17 29.00 8.31 52
500 76.14 61.42 40.45 37.16 9.94 78
650 82.92 64.28 42.42 32.76 10.35 123

Hard
375 54.37 53.74 30.68 28.60 5.05 52
500 58.86 55.70 39.47 36.06 7.21 78
650 65.53 60.24 41.78 33.60 7.19 123

Table 2: Detection and orientation estimation performance for different scales and diffi-
culty levels using the VGG-16 backbone and 100 proposals.

DispNet model fine-tuned explicitly for the KITTI stereo dataset; overall,
the difference is not very significant.

As stated above, the depth estimation error increases with the distance
to the camera. In Fig. 12 we study the distribution of the error as a function
of the distance in the depth axis of the camera frame. We also represent the
quadratic error of the depth estimation, from Eq. 6, as a reference.

As can be observed in both representations, localization error is accept-
ably low, particularly within the 0-20 m range. Truck localization seems to

24



diffic. Car Pedest. Cyclist Van Truck time (s)

Average Precision (AP)

SubCNN [48] 88.86 71.34 70.77 - - 2
Pose R-CNN [49] 75.74 63.38 68.04 - - 2
Ours (VGG, 650) 84.49 70.39 55.28 34.78 12.30 0.123

Average Orientation Similarity (AOS)

SubCNN [48] 88.43 66.28 63.41 - - 2
Pose R-CNN [49] 75.35 59.89 62.25 - - 2
Ours (VGG, 650) 82.92 64.28 42.42 32.76 10.35 0.123

Table 3: Comparison with other methods of the detection and viewpoint estimation per-
formance (%). Results for Moderate samples are shown.

be affected by unusually high errors, although the significance of the results
is diminished by the low number of samples in the category. On the other
hand, the occurrence of pedestrian outliers in the >20 m range is also espe-
cially notorious, due to the incidence of occlusions (e.g., pedestrians behind
vehicles).

To study the effect of the technique introduced in Sec. 5.3 to estimate the
center of the object, we compare our method with a naive implementation
where the predicted location is directly given by the average of the coordi-
nates of the points within the selected ROI. Results of the signed difference
between the estimation and the ground-truth for the depth coordinate are
provided in Fig. 13. It is noticeable that the median of the error is closer
to 0 using the proposed approach, whereas the naive approach introduces a
negative bias in the measurements.

We also posed the problem as a classification in bird’s eye view, as in
the recent KITTI benchmark2, and compute detection precision-recall stats.
Results are presented in Table 4 for two different minimum IoU thresholds.

The resulting local scene model can be suitably represented as a top-
down view over the ground plane, with the position and class of the objects.
Thus, Fig. 14 shows examples of the performance of our method on the

2http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev

25

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev


Car Ped. Cyc. Van Truck
Class

0

5

10

15

20

25

30

35

40

A
bs

ol
ut

e 
lo

ca
liz

at
io

n 
er

ro
r 

(m
)

(a)

Car Ped. Cyc. Van Truck
Class

0

5

10

15

20

25

30

35

40

A
bs

ol
ut

e 
lo

ca
liz

at
io

n 
er

ro
r 

(m
)

(b)

Figure 11: Absolute Euclidean error in the location estimation for the different classes,
using two different stereo matching algorithms: (a) SGM; (b) DispNet. The central mark
represents the median, and the bottom and top edges of the box indicate the first and
third percentiles, respectively; outliers are represented outside the whiskers.

min IoU diffic. Car Pedest. Cyclist Van Truck

Average Precision (AP)

20%
Easy 77.67 38.55 32.72 25.55 18.68

Moder. 66.49 31.71 22.22 21.09 12.73
Hard 49.88 31.42 22.02 15.38 11.16

40%
Easy 70.64 12.64 8.35 22.16 8.68

Moder. 53.23 12.95 5.19 18.84 8.18
Hard 38.18 9.17 5.17 13.77 4.55

Table 4: Detection performance evaluated in bird’s eye view.

KITTI dataset for the two variants of the number of bins (Nb). Each sample
depicts the detections in the image, as well as the corresponding local scene
models, where obstacles are located on a top-down view of the reconstructed
point cloud. KITTI ground-truth detections are depicted in a faded color.
Additionally, points falling in a 10 cm interval around the ground plane are
projected in green on the image, as a rough free space estimation.

26



0 20 40 60
Distance (m)

0

5

10

15

20

25

30

35

40

A
bs

ol
ut

e 
lo

ca
liz

at
io

n 
er

ro
r 

(m
)

Car
Ped.
Cyc.
Van
Truck

(a)

0 20 40 60
Distance (m)

0

5

10

15

20

25

30

35

40

A
bs

ol
ut

e 
lo

ca
liz

at
io

n 
er

ro
r 

(m
)

Car
Ped.
Cyc.
Van
Truck

(b)

Figure 12: Localization error vs. distance using two different stereo matching algorithms:
(a) SGM; (b) DispNet. The dashed line represents the estimated depth estimation error.

The difference in the pose estimation of the closest car in Fig. 14c and Fig.
14d shows the effect of the increase in angular resolution. Nonetheless, it is
apparent that, in both cases, our method enables an accurate understanding
of the traffic scene in front of the vehicle as an object-based representation.

6.3. Tests on the IVVI 2.0 Platform

Further testing in real traffic situations was performed using the IVVI 2.0
platform, as a way to prove the universality of the algorithm in automotive
applications with different sensor devices and setups. In our experiments,
we use the narrow baseline of the available trinocular system (12 cm) to
maximize the accuracy at short ranges and employ the 1280 × 960 images
from the two cameras. For the stereo matching, we use the DispNet option.

According to the results in Sec. 6.1, the detection stage uses a VGG-16
model trained for a scale of 650 pixels in height, 100 proposals, and Nb = 8.
During inference, a region of interest of 1280 × 650 is extracted from the
central area of the left image. Thus, topmost and bottommost rows, which
mainly contain sky and road areas and therefore do not convey meaningful
information for this branch, are discarded.

Fig. 15 shows four examples of detections and top-view scene models
at urban and peri-urban traffic scenarios near our campus. IVVI 2.0 sensing

27



Car Ped. Cyc. Van Truck
Class

-20

-15

-10

-5

0

5

10

D
ep

th
 e

st
im

at
io

n 
er

ro
r 

(m
)

(a)

Car Ped. Cyc. Van Truck
Class

-20

-15

-10

-5

0

5

10

D
ep

th
 e

st
im

at
io

n 
er

ro
r 

(m
)

(b)

Figure 13: Localization error (detection minus ground-truth) along the depth axis when
estimating the center of the object using: (a) our approach; (b) a naive approach. DispNet
disparity used.

devices present significantly different properties than the one used for training
the model, concerning both the field of view and the sensitivity of the CCD
sensor. Despite this, results prove that the method can generalize well.

Regarding the computation times needed for processing the 1280 × 960
image, DispNet stereo matching takes around 80 ms, while the detection on
the chosen 1280 × 650 ROI takes less than 100 ms on average. The system is
therefore capable of delivering information to the decision-making modules at
an acceptable rate of 10 Hz, enabling a fast response to unexpected situations.

7. Conclusion

A computer vision-based framework designed as a step towards a full traf-
fic scene understanding has been presented. Traffic participants are identified
by a CNN-based method, showing the potential of this approach within au-
tomotive applications. Viewpoint estimation is introduced as an additional
inference task to endow the system with further insight into the object fea-
tures. Conveniently, image recognition is not based on prior knowledge,
which makes the method robust to a variety of possible situations.

Because of the nature of the adopted approach, joint object detection and
viewpoint estimation can be performed simultaneously over all classes. Since

28



(a) (b)

(c) (d)

Figure 14: Detections and local scene model for different values of Nb: 8 bins (left) and
16 bins (right). Color code: red for Car, blue for Pedestrian and orange for Van. Grid
size in the top-view scene model is 10/3 (3.33) m.

CNN parameters are shared across all tasks and feature vectors computed by
the CNN are low-dimensional, computation times are compliant with real-
time requirements, yet achieving accurate results. We have also shown that
the input scale and the feature extractor architecture are hyperparameters
which can be tuned to reach an optimal accuracy/time trade-off according
to the requirements of the specific application.

29



(a) (b)

(c) (d)

Figure 15: Detections and local scene model in our IVVI 2.0 platform. Color code: red
for Car, blue for Pedestrian and orange for Van. Grid size in the top-view scene model is
5 m.

The output from the CNN is merged with information retrieved from a
stereo-vision-based 3D reconstruction to gather an accurate situation assess-
ment in complex traffic situations. The accuracy in the depth estimation

30



has been proven to be adequate for the short-to-medium range. Besides, the
modular design of the method makes it possible to employ different depth
estimation algorithms. We rely exclusively on visual information, but the
proposal serves as a basis for future developments including alternative data
sources; e.g., lidar scanners.

Future works may also include new categories of traffic elements, even
those belonging to the infrastructure, to enrich the scene model. Semantic
segmentation might also be a valuable cue to get a more comprehensive
understanding of the different elements of the traffic scene, either as a per-
agent semantic mask or as a global estimation of the whole field-of-view. On
the other hand, we aim to extend the method to properly handle extreme
cases of road slope changes by detecting them beforehand.

However, the primary focus of future development will be on the extension
of the method to the time domain to make predictions about future behaviors
of agents involved in the scene. In this regard, viewpoint estimation provided
by the presented method will play a fundamental role to enable a robust
inference.

Acknowledges

This research was supported by the Spanish Government through the
CICYT projects (TRA2015-63708-R and TRA2016-78886-C3-1-R), and the
Comunidad de Madrid through SEGVAUTO-TRIES (S2013/MIT-2713). We
gratefully acknowledge the support of the NVIDIA Corporation with the
donation of the GPUs used for this research.

References

References

[1] A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi, P. Medici, M. Panciroli,
A. Prioletti, PROUD-public road urban driverless test: architecture and
results, in: Proc. IEEE Intelligent Vehicles Symposium (IV), 2014, pp.
648–654.

[2] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich,
C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knoeppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke,

31



M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, E. Zeeb,
Making Bertha Drive — An Autonomous Journey on a Historic Route,
IEEE Intelligent Transportation Systems Magazine 6 (2) (2014) 8–20.

[3] E. Romera, L. M. Bergasa, R. Arroyo, Can we unify monocular detectors
for autonomous driving by using the pixel-wise semantic segmentation
of CNNs?, in: IEEE Intelligent Vehicles Symposium (IV) - DeepDriving
Workshop, 2016.

[4] J. Dai, K. He, J. Sun, Instance-aware Semantic Segmentation via Multi-
task Network Cascades, in: Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3150–3158.

[5] H. Zhu, K. V. Yuen, L. Mihaylova, H. Leung, Overview of Environment
Perception for Intelligent Vehicles, in: IEEE Transactions on Intelligent
Transportation Systems, 2017, pp. 2584 – 2601.

[6] C. Guindel, D. Mart́ın, J. M. Armingol, Modeling Traffic Scenes for
Intelligent Vehicles Using CNN-Based Detection and Orientation Esti-
mation, in: ROBOT 2017: Third Iberian Robotics Conference: Volume
2, Springer International Publishing, 2018, pp. 487–498.

[7] I. Markovic, F. Chaumette, I. Petrovic, Moving object detection, track-
ing and following using an omnidirectional camera on a mobile robot,
in: Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 5630–5635.

[8] D. Olmeda, A. de la Escalera, J. M. Armingol, Contrast invariant fea-
tures for human detection in far infrared images, in: Proc. IEEE Intel-
ligent Vehicles Symposium (IV), 2012, pp. 117–122.

[9] U. Franke, D. Pfeiffer, C. Rabe, C. Knoeppel, M. Enzweiler, F. Stein,
R. G. Herrtwich, Making Bertha See, in: IEEE International Conference
on Computer Vision Workshops (ICCVW), 2013, pp. 214–221.

[10] B. Musleh, A. de la Escalera, J. M. Armingol, U-V disparity analysis
in urban environments, in: Computer Aided Systems Theory - EURO-
CAST 2011, Springer Berlin Heidelberg, 2012, pp. 426–432.

32



[11] H. Badino, U. Franke, R. Mester, Free space computation using stochas-
tic occupancy grids and dynamic programming, in: IEEE International
Conference on Computer Vision Workshops (ICCVW), 2007.

[12] F. Oniga, S. Nedevschi, Processing dense stereo data using elevation
maps: Road surface, traffic isle, and obstacle detection, IEEE Transac-
tions on Vehicular Technology 59 (3) (2010) 1172–1182.

[13] A. Broggi, S. Cattani, M. Patander, M. Sabbatelli, P. Zani, A full-
3D Voxel-based Dynamic Obstacle Detection for Urban Scenario using
Stereo Vision, in: Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2013, pp. 71–76.

[14] I. Zubiaguirre-Bergen, M. Torres-Torriti, M. Flores-Calero, Generación
de Regiones con Potencial de Contener Peatones usando Reconstrucción
3D No Densa a partir de Visión Monocular, Revista Iberoamericana de
Automática e Informática Industrial 15 (3) (2018) 243–251.

[15] P. F. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object
detection with discriminatively trained part-based models, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 32 (9) (2010) 1627–
1645.

[16] W. Tian, M. Lauer, Fast Cyclist Detection by Cascaded Detector and
Geometric Constraint, in: Proc. IEEE International Conference on In-
telligent Transportation Systems (ITSC), 2015, pp. 1286–1291.

[17] B. Pepik, M. Stark, P. Gehler, B. Schiele, Teaching 3D geometry to
deformable part models, in: Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2012, pp. 3362–3369.

[18] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, in: Proc. Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[19] J. Li, X. Mei, D. Prokhorov, Deep Neural Network for Structural Predic-
tion and Lane Detection in Traffic Scene, IEEE Transactions on Neural
Networks and Learning Systems 28 (3) (2017) 690–703.

33



[20] E. Romera, J. M. Álvarez, L. M. Bergasa, R. Arroyo, ERFNet: Ef-
ficient Residual Factorized ConvNet for Real-time Semantic Segmen-
tation, IEEE Transactions on Intellent Transportation Systems 19 (1)
(2018) 263–272.

[21] J. Žbontar, Y. LeCun, Computing the Stereo Matching Cost with a
Convolutional Neural Network, in: Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 1592–1599.

[22] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbas, V. Golkov,
P. van der Smagt, D. Cremers, Thomas Brox, FlowNet: Learning Op-
tical Flow with Convolutional Networks, in: Proc. IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 2758–2766.

[23] F. Yang, W. Choi, Y. Lin, Exploit All the Layers: Fast and Accurate
CNN Object Detector with Scale Dependent Pooling and Cascaded Re-
jection Classifiers, in: Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 2129–2137.

[24] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies
for accurate object detection and semantic segmentation, in: Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 580–587.

[25] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks, IEEE Transactions
on Pattern Analysis and Machine Intelligence 39 (6) (2017) 1137–1149.

[26] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: Proc.
IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2980–2988.

[27] L. Yang, J. Liu, X. Tang, Object detection and viewpoint estimation
with auto-masking neural network, in: Computer Vision - ECCV 2014,
Springer, Cham, 2014, pp. 441–455.

[28] S. Tulsiani, J. Malik, Viewpoints and Keypoints, in: Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 1510–1519.

34



[29] C. C. Pham, J. W. Jeon, Robust object proposals re-ranking for object
detection in autonomous driving using convolutional neural networks,
Signal Processing: Image Communication 53 (2017) 110–122.

[30] A. Palazzi, G. Borghi, D. Abati, S. Calderara, R. Cucchiara, Learning to
Map Vehicles into Bird’s Eye View, in: Proc. International Conference
on Image Analysis and Processing (ICIAP), 2017, pp. 233–243.

[31] X. Chen, H. Ma, J. Wan, B. Li, T. Xia, Multi-View 3D Object Detection
Network for Autonomous Driving, in: Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 6526–6534.

[32] S.-l. Yu, T. Westfechtel, R. Hamada, K. Ohno, S. Tadokoro, Vehicle
Detection and Localization on Bird’s Eye View Elevation Images Using
Convolutional Neural Network, in: Proc. IEEE International Sympo-
sium on Safety and Rescue Robotics (SSRR), 2017, pp. 102–109.

[33] D. Mart́ın, F. Garćıa, B. Musleh, D. Olmeda, G. A. Peláez, P. Maŕın,
A. Ponz, C. H. Rodŕıguez Garavito, A. Al-Kaff, A. de la Escalera, J. M.
Armingol, IVVI 2.0: An intelligent vehicle based on computational per-
ception, Expert Systems with Applications 41 (17) (2014) 7927–7944.

[34] C. H. Rodŕıguez Garavito, J. Carmona, A. de la Escalera, J. M. Armin-
gol, Stereo Road Detection Based on Ground Plane, in: Computer Aided
Systems Theory - EUROCAST 2015, Springer, Cham, 2015, pp. 748–
755.

[35] C. Guindel, D. Martin, J. M. Armingol, Joint object detection and view-
point estimation using CNN features, in: Proc. IEEE International Con-
ference on Vehicular Electronics and Safety (ICVES), 2017, pp. 145–150.

[36] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fis-
cher, Z. Wojna, Y. Song, S. Guadarrama, K. Murphy, Speed/accuracy
trade-offs for modern convolutional object detectors, in: Proc. IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 3296–3305.

[37] H. Hirschmüller, Stereo Processing by Semiglobal Matching and Mu-
tual Information, IEEE Transactions on Pattern Analysis and Machine
Intelligence 30 (2) (2008) 328–341.

35



[38] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy,
T. Brox, A Large Dataset to Train Convolutional Networks for Disparity,
Optical Flow, and Scene Flow Estimation, in: Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4040–
4048.

[39] R. Schnabel, R. Wahl, R. Klein, Efficient RANSAC for point-cloud shape
detection, Computer Graphics Forum 26 (2) (2007) 214–226.

[40] A. de la Escalera, E. Izquierdo, D. Mart́ın, B. Musleh, F. Garćıa, J. M.
Armingol, Stereo visual odometry in urban environments based on de-
tecting ground features, Robotics and Autonomous Systems 80 (June)
(2016) 1–10.

[41] R. Girshick, Fast R-CNN, in: Proc. IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1440–1448.

[42] A. Geiger, P. Lenz, R. Urtasun, Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite, in: Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3354–
3361.

[43] O. Faugeras, Three-dimensional computer vision: a geometric view-
point, The MIT Press, 1993.

[44] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, T. Darrell, Caffe: Convolutional Architecture for Fast
Feature Embedding, in: Proc. ACM International Conference on Multi-
media, 2014, pp. 675–678.

[45] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional
networks, in: Computer Vision - ECCV 2014, Springer International
Publishing, 2014, pp. 818–833.

[46] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition, CoRR abs/1409.1 (2014).

[47] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, H. Adam, MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,
arXiv:1704.04861 [cs.CV] (2017).

36



[48] Y. Xiang, W. Choi, Y. Lin, S. Savarese, Subcategory-aware Convolu-
tional Neural Networks for Object Detection, in: Proc. IEEE Winter
Conference on Applications of Computer Vision (WACV), 2017, pp.
924–933.

[49] M. Braun, Qing Rao, Y. Wang, F. Flohr, Pose-RCNN: Joint object
detection and pose estimation using 3D object proposals, in: Proc. IEEE
International Conference on Intelligent Transportation Systems (ITSC),
2016, pp. 1546–1551.

37


